Symmetric functions over finite fields

نویسنده

  • Mihai Prunescu
چکیده

The number of linear independent algebraic relations among elementary symmetric polynomial functions over finite fields is computed. An algorithm able to find all such relations is described. The algorithm consists essentially of Gauss’ upper triangular form algorithm. It is proved that the basis of the ideal of algebraic relations found by the algorithm consists of polynomials having coefficients in the prime field Fp. A.M.S.-Classification: 14-04, 15A03.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved lower bound on the number of balanced symmetric functions over GF

The lower bound on the number of n-variable balanced symmetric functions over finite fields GF(p) presented in [1] is improved in this paper.

متن کامل

Random Matrix Theory over Finite Fields

The first part of this paper surveys generating functions methods in the study of random matrices over finite fields, explaining how they arose from theoretical need. Then we describe a probabilistic picture of conjugacy classes of the finite classical groups. Connections are made with symmetric function theory, Markov chains, Rogers-Ramanujan type identities, potential theory, and various meas...

متن کامل

Rank properties of subspaces of symmetric and hermitian matrices over finite fields

We investigate constant rank subspaces of symmetric and hermitian matrices over finite fields, using a double counting method related to the number of common zeros of the corresponding subspaces of symmetric bilinear and hermitian forms. We obtain optimal bounds for the dimensions of constant rank subspaces of hermitian matrices, and good bounds for the dimensions of subspaces of symmetric and ...

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010